Baby Long Legs! And a First Look into the Mind of the Giraffe

By Posted on 5 min read 516 views

A baby giraffe was born the other day at the Toronto Zoo! I’m so excited. Her name is Baby Long Legs. Take at look at her here.

Welcome to the world, Baby Long Legs!

I’ve been meaning to talk about a really cool research study that was done with giraffes so now is the perfect time, to celebrate Baby Long Legs!

We know quite a bit about giraffe biology, their behaviour, and their interactions with their surroundings, but as far as I know, nothing is known about their cognition: what goes on inside their head. Until now!

A group of scientists from Spain and Germany noticed that like chimpanzees, giraffes live in fission-fusion societies and eat quite a variety of plants. A fission-fusion society is where animals come together into groups, but over time separate, perhaps come back together, or form different groups. For example, a large group of animals may form smaller groups while they are eating or sleeping throughout the day.

Chimpanzees are well-known for being quite intelligent. (I’ll have to write a blog or two about them some time. They are amazing.) So if giraffes are similar to chimpanzees in certain ways, could they be intelligent too? The scientists decided to design some experiments to find out if they could get a glimpse into giraffe cognition.

Where to start? Well, one of the most basic things we can do is realize that the world is made up of objects that are separate from our own bodies, and that these objects exist in time and space. Taking this a bit further, we can also realize that objects continue to exist even if we can no longer see them. Scientists call this object permanence. Object permanence develops gradually in humans when we are babies, but it also occurs in other primates and birds such as corvids and parrots. Are giraffes capable of object permanence?

One way object permanence is tested is by showing the animal an object that it really likes (such as a piece of food), then hiding it under one of several identical opaque containers, and allowing the animal to choose which container the food or object is hiding under. If the animal picks the correct container on its first choice, it has passed the test of object permanence.

This is what the scientists did with three giraffes from the Barcelona Zoo and three giraffes from the Leipzig Zoo. They separated each giraffe inside their indoor enclosures. An experimenter approached each giraffe with two containers. The giraffe watched as the experimenter placed a piece of apple or carrot (depending on what that particular giraffe liked best) in one of the containers. The experimenter then closed both containers and presented the containers to the giraffe to make a choice. If the giraffe chose the container that held the apple or carrot, this was evidence of object permanence.

An experimenter showing the contents of the container to a giraffe before closing the lids and allowing the giraffe to make a choice. One of the containers holds apples or carrots. Source: Journal of Comparative Psychology.
A giraffe choosing one of the containers. Look at that beautiful tongue! Source: Journal of Comparative Psychology.

So, how did the giraffes do? They overwhelmingly chose the container with the food! They showed evidence of object permanence.

(I should note a couple of things before moving on. It is important that the giraffes did not choose the correct container simply because they could smell the food inside. The experimenters did a test where they hid the food in one of the containers and the giraffes didn’t see which container the food was placed in–they were just presented with two closed containers. In this case, the giraffes chose the container with the food only half the time, which is what we would expect if they were just choosing containers randomly. This means the giraffes could not choose the correct container based on smell. The other important point is that whether they mean to or not, the experimenter could give subtle cues to the giraffe about which container to choose. To prevent this, the experimenter closed their eyes when they presented the giraffes with the containers. The experimenter could tell which container the giraffe chose because they could feel the giraffe bunt it with its nose or touch it with its tongue (see photo above).)

But the scientists did not stop there. Next they gave the giraffes a memory test. After closing the lids of the containers, the experimenter waited 30 seconds, 60 seconds, and then 120 seconds, before allowing the giraffe to make a choice. (In the experiment described above, the delay between closing the lids and allowing the giraffes to choose was only 2 seconds.) In this case, giraffes still correctly chose the container with the food after a 30 second delay, again showing object permanence. But for the 60 second and 120 second delays, they chose the correct container only half the time. This suggests that maybe giraffes have limits to their memory or attention.

For their last experiment–and this is really cool–the scientists wanted to see if giraffes could choose the container with the food based on sound cues. The experimenter turned their back on the giraffes while putting the food in one of the containers, so the giraffe couldn’t see which container held the food. With both containers closed, the experimenter turned around to face the giraffe and shook the container that held the food, which made a loud rattling sound. The giraffes chose the container with the food!

Then, instead of shaking the full container, the experimenter shook the empty container. In this case, the giraffe would have to figure out that the container that was shaken did not contain anything, so they could have to choose the other container, which contained the food. Unfortunately, the giraffes had a hard time with this situation and did not choose the correct container very often. As the scientists point out, the giraffes might not have been using sound cues at all but instead chose the container that was shaken. This would result in the correct choice when the full container was shaken, but not when the empty container was shaken.

A clever thing the scientists did was keep track of the giraffe’s body position throughout the testing. After seeing which container was full, did the giraffes simply turn their body towards the full container as a trick to remember which container to choose? Turns out sometimes the giraffes did this, but they did not use this tactic consistently. The most successful giraffe, Ashanti, never seemed to use her body position at all. Whether or not giraffes adjusted their body position to ensure they chose the correct container, I think the results of these experiments show that giraffes are quite clever! And also, given that giraffes were successful participants in these experiments, this paves the way for more discoveries to be made about giraffe cognition.

Which makes me marvel at what must be going on in Baby Long Legs’s mind as she explores this big new world around her. Welcome, Baby Long Legs!

Baby Long Legs and her mom. Source: blogTO.

Reference

Caicoya, Á. L., Ensenyat, C., Amici, F., & Colell, M. (2019). Object permanence in Giraffa camelopardalis: First steps in giraffes’ physical cognition. Journal of Comparative Psychology, 133(2), 207-214. http://dx.doi.org/10.1037/com0000142